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Introduction

HE computational efficiency in computing the viscous
flowfields around airfoils may be improved by splitting the
flow domain into an inviscid potential flow zone and a viscous
boundary-layer/separated flow zone and by solving the distinct gov-
erning equations in each zone. In conventional viscous/inviscid in-
teraction methods! this is achieved by solving the boundary-layer
equations around the airfoil and assuming potential flow for the
outer flowfield. This approach has the well-known limitations of
the boundary-layer equations. In addition, it needs an unsteady wake
modeling in the computations of unsteady flowfields. These compli-
cations suggest the desirability of exploring a Navier-Stokes based
viscous-inviscid interaction approach for the computation of un-
steady flowfields.
We have coupled a Reynolds-averaged Navier-Stokes solver with
a potential flow panel code in an attempt to split the flowfield
into viscous and inviscid flow zones with the objective to reduce
the computational domain in which Navier-Stokes equations are
solved. In the present work, we are mainly interested in unsteady
flows. Summa et al.? originally applied a similar concept of cou-
pling potential and viscous flow solution methods to steady flows.
In comparison to the full Navier-Stokes solvers in which the com-
putational domain is required to extend approximately 15 chord
lengths from the airfoil surface, in this methodology the computa-
tional domain boundaries can be placed as close as one-fifth of a
chord length from the airfoil surface. The reduced computational do-
main encompasses the viscous boundary layer/wake regions in the
close proximity of the airfoil, and the adjacent inviscid flow zone
between the viscous flow zone and the outer boundary of the com-
putational domain. The boundary conditions at the outer boundary
are obtained from the potential flow solution. The boundary condi-
tions for the potential flow solution are, in turn, computed by the
Navier-Stokes solver on the inviscid flow zone beyond the bound-
ary layers. Thus, the potential and Navier-Stokes flow solutions are

coupled through their boundary conditions. The vortical wake inthe

unsteady flows is modeled with concentrated wake vortices. This in-
viscid wake modeling fully captures the unsteadiness contained in
the wake.
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Navier-Stokes/Potential Flow Interactive Solution
Method

In the Navier-Stokes/potential flow interactive solution method
(NSPOT), the computational domain is partitioned into two zones,
a near-field and a far-field zone. Figure 1 shows the near-field zone
around an airfoil and its wake on a C grid. The solid line in the figure
encloses the outer boundary of the near-field zone S,. The near-field
zone encompasses the viscous boundary-layer and wake regions
and the inviscid flow region between the outer boundary S, and the
viscous flow regions. The Navier-Stokes (NS) equations are solved
in the entire near-field zone. An inner boundary S; which is denoted
by a dashed line in Fig. 1, is placed in the inviscid flow region of
the near-field computational domain. The source and vortex panels
used in the solution of the potential flow equation are placed on
S;. The region outside of S,, which extends to the freestream flow
conditions in all directions, is the far-field zone. The flowfield in the
far-field zone is assumed to be inviscid and irrotational and, thus,
may be computed by a Potential flow solution.

In the computation of unsteady flowfields, the downstream edge
of the inner boundary S;,, is placed in the close vicinity of the airfoil
as shown in Fig. 1. It cuts through the wake at 10-50% chord length
from the airfoil trailing edge. For unsteady flows, it was found to be
necessary to model the vortex shedding at the intersection of S;,, and
the viscous wake. Whereas, in the computation of steady flowfields
the §;,, is extended beyond the computational grid. The extended
S; boundary encloses all of the vorticity in the wake, and no vortex
shedding is required.’

Potential Flow Selver ]

The flowfield beyond the inner boundary S; is assumed to be
inviscid, irrotational, and isentropic. The governing equations in
terms of the disturbance potential read

ap

5 TV (Vo) =0 M
d V2 Vp
§(V¢) +V(7) + vy =0 )

For low Mach number flows, density variations in Eq. (1) are first
dropped, and the resulting Laplace’s equation V2¢ = 0 is solved
with a panel method using source/sink and vorticity singularity so-
lutions to satisfy the appropriate boundary conditions on S;. The ve-
locities computed by the panel method on S, are then corrected for
compressibility effect using the Laitone compressibility correction.>
The pressure and density fields on S, are evaluated by using the isen-
tropic relation between p and p and then, by integrating Eq. (2) for

pressure?
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where V2 is computed with the compressibility corrected velocities.

In unsteady flows, as the solution is marched in time, a discrete
vortex is shed from the S;,, boundary. The magnitude of the shed
vortex is based on the time rate of change of circulation on the S;
boundary: y = —(I'* — I'*~1), where superscript n denotes the
time step. The circulation I" is computed from the integration of
the tangential velocity on §; given by the NS solution. Once the
vortices are shed, they are convected downstream. The convection
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Fig.1 Computational domain for the Navier-Stokes/potential flow in-
teractive solution method.

velocity is approximated by an empirical formula* which states that
the depression in the velocity profile decreases as 1/./x.

Navier-Stokes Solver

The strong conservation-law form of the two-dimensional, thin-
layer Navier-Stokes equations in a curvilinear coordinate system
(&, ¢) along the axial and normal direction respectively, is given as
follows:

8,@ + a;ﬁ + B;G = Re—lagg (4)

where Q is the vector of conservative variables, F and G are the
inviscid flux vectors, and S is the thin-layer approximation of the
viscous fluxes in the ¢ direction normal to the airfoil surface.’ The
flowfield is assumed to be fully turbulent, and the Baldwin-Lomax
turbulence model is used to evaluate the eddy viscosity.

The numerical integration is performed using an upwind biased,
factorized, iterative, implicit, numerical scheme® given by
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In Eq. (5), the superscript n denotes the time step and p refers to
Newton subiterations within each time step. The inviscid fluxes F
and G are evaluated using Osher’s third-order-accurate upwinding
scheme. The flux Jacobian matrices A* and B* are evaluated by
the Steger-Warming flux-vector splitting.

Results and Discussion

We investigated unsteady flowfields around a NACA 0012 airfoil
undergoing pitching motions and steady flowfields around stationary
airfoils held at various incidences. A 181 x 81 point C-type baseline
grid with 120 points around the airfoil and 81 points in the normal
direction was employed. The normal spacing at the airfoil surface
was 0.00005. The computational grid for NSPOT computations was
obtained from the baseline grid by excluding the grid lines beyond
the specified S, boundary in the transverse direction. The inner
boundary S; was located 4-6 grid points inside S,.
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Fig.2 Flowtfield computed by NS and NSPOT, S, = 0.15c, sinuseidally
oscillating airfoil, o = 5 + 5 cos(w?), we/2Us = 0.099, Mo, = 0.3, and
Re =3.93 x 105,

Flow over an Oscillating Airfoil

We first studied the unsteady flowfield around a NACA 0012
airfoil undergoing an oscillatory motion with a reduced frequency,
k= wc/2Usx = 0.099 and a(t) = 5 + 5 cos(wt). Here w is the fre-
quency of the oscillatory motion, and « is in degrees. The pitching
axis was located at 0.25¢. The flowfield was computed at M, = 0.3
and Re = 3.93 x 10°. In the NSPOT computations, the computa-
tional boundaries were located at S, = 0.15¢ and S;,, = 0.30c.
This outer boundary location sets the computational grid size to
181 x 49, which gives about 40% savings in the total number of
grid points.

Figure 2 shows the flowfields computed by NSPOT and NS so-
lutions in terms of density contours with the same contour values.
The quantitative agreement in the density contours shows that the
NSPOT solution captures the compressibility of the flowfield accu-
rately. It may be concluded that for low Mach number flows, the
density variations in the continuity equation Eq. (1) may be omit-
ted when this equation is solved on S;, provided that the computed
velocities on S, are corrected for compressibility effects, and the
evaluation of pressure includes the compressibility effects through
isentropic flow relations. Figure 3 shows the boundary-layer profiles
at the maximum angle of attack, « = 10 deg 4. The + marks on the
profiles correspond to every fifth grid point. The predictions of the
NSPOT and NS solutions agree quite well.

Figure 4 shows the unsteady aerodynamic load hysteresis loops
computed by NS and NSPOT solutions and the measurements of
McAlister et al.® The NS and NSPOT predictions, in general, agree
well except for a slight deviation in the drag and moment coefficients
as the angle of attack increases. This is mainly caused by the slight
underprediction of the stagnation pressure in the NSPOT compu-
tation, which may be attributed to the compressibility effect. As
the oscillatory motion advances into the second cycle, the lift pre-
dicted by NSPOT is slightly higher than the NS prediction and is not
exactly periodic. This behavior is attributable to the differences in
the vortical wake computations. In the NS computations, the down-
stream boundary extends 10 chord lengths, and the vorticity in the
wake leaves the computational domain when it reaches the down-
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Fig.3 Boundary-layer profiles, sinusoidally oscillating airfoil, o = 5 +
5 cos(wt), we/2Us = 0.099, Mo, = 0.3, and Re = 3.93 x 106,
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Fig. 4 Time history of the unsteady aerodynamic loads, sinusoidally
oscillating airfoil, o = 5 + 5 cos(wi), we/2Us = 0.099, M = 0.3, and
Re = 3.93 x 106,

stream boundary. However, in NSPOT, all of the shed vortices are
conserved and are accounted for.

The accuracy of the computed aerodynamic loads deteriorates
when the outer boundary §, is located as close as 0.10c from the
airfoil, for which S; happens to be located at 0.05¢ from the airfoil.*
In this case, the S; boundary is placed so close that it does not
completely enclose the vortical field around the airfoil. Similarly,
NSPOT computations were found to be insensitive to the location
of the §;,, in the 0.10c—0.60c range. However, the accuracy of
the computations degraded when S;,, is placed beyond one chord
length from the trailing edge.* This behavior is attributed to the
weakened coupling between shed vortices and the unsteady wake.
The longer the unsteady viscous wake ahead of the vortex shed-
ding boundary S;,,, the more the unsteady effects are delayed and
suppressed.

STEADY—STATE SOLUTIONS
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Fig. 5 Steady-state lift values computed by NS and NSPOT.

Steady Flows

We computed steady flowfields around a NACA 0012 airfoil at
M, = 0.30, Re = 3 x 10° and & = 5, 10, and 14 deg. NSPOT
computations produced a 47%—-30% grid point savings over the full
NS computations when the S, location was varied between 0.10¢
and 0.40c. Figure 5 shows the lift values computed by NS and
NSPOT solutions as a function of §, location and incidence. It is
clearly seen that the Navier-Stokes/potential flow interactive solu-
tion method is highly accurate and stable. At low incidences, such
as o = 5 deg, for which the boundary-layer thickness is relatively
thin, the outer boundary S, can be placed at a distance as close as
0.10c distance from the airfoil surface. As the vortical flow region
grows at higher incidences, the S, location has to be placed far-
ther away. However, for mostly attached flows up to @ = 14 deg,
the accuracy of the computed lift value with S, located at 0.20¢
does not degrade more than 1%. At incidences higher than o = 14-
deg, the NS solution predicted massive flow separation. For mas-
sively separated flows, NSPOT computations cease to be efficient,
since the outer boundary S, has to be placed more than two chord
lengths away from the airfoil as the extent of the vortical region
Srows.

Concluding Remarks

We have developed a Navier-Stokes/potential flow interactive
solution method for unsteady and steady flows. This method
confines the Navier-Stokes computations to the close proxim-
ity of the vortical boundary-layer and the wake regions. The
method is capable of predicting low Mach number, attached
or mildly separated flowfields as accurately as the full do-
main Navier-Stokes solutions. For a typical flowfield, the Navier-
Stokes/potential flow interactive solution method is about 40%
more efficient than the full Navier-Stokes method in terms of CPU
times.

Acknowledgments
This investigation was supported by the Naval Air Warfare Cen-
ter, Weapons Division, China Lake, California and by the National
Research Council Research Associateship Program.

References

1Cebeci, T., Platzer, M. F,, Jang, H. M., and Chen, H. H., “An Inviscid-
Viscous Interaction Approach to the Calculation of Dynamic Stall Initiation
on Airfoils,” Journal of Turbomachinery, Vol. 115, No. 4, 1993, pp. 714-723.

2Summa, J., Strash, D., and Yoo, S., “Zonal Flow Analysis Method for
Two-Dimensional Airfoils,” AIAA Journal, Vol. 30, No. 2, 1992, pp. 548-
549.



154 AIAA JOURNAL, VOL. 33, NO. 1: TECHNICAL NOTES

3Tuncer, L. H., Ekaterinaris, J. A., and Platzer, M. F,, “A Viscous-Inviscid
Interaction Method for 2-D Unsteady, Compressible Flows,” AIAA Paper
93-3019, June 1993.

4Tuncer, I. H., Ekaterinaris, J. A., and Platzer, M. E, “A Novel Viscous-
Inviscid Interaction Method with Inviscid Wake Modeling,” AIAA Paper
94-0178, Jan. 1994.

SEkaterinaris, J. A., Cricelli, A., and Platzer, M. E, “A Zonal Method
for Unsteady, Viscous, Compressible Airfoil Flows,” Journal of Fluids and
Structures, Vol. 8, Jan. 1994, pp. 107-123.

SMcAlister, K. W., Pucci, S. L., McCroskey, W. J., and Carr, L.
W., “An Experimental Study of Dynamic Stall on Advanced Airfoil
Sections, Pressure and Force Data,” Vol. 2, NASA-TM-84245, Sept.
1982.

Numerical Simulation by
Cubic-Polynomial
Interpolation for Unsteady,
Incompressible, Viscous Flow

Hiromi Sugiyama*
Japan Automobile Research Institute,
Ibaraki 305, Japan

Introduction

URING the past three decades there has been significant

progress in the numerical analysis of unsteady, incompressible
flow problems. Despite the advances in algorithms and computer
hardware, however, time-accurate solutions of the incompressible
Navier-Stokes (N-S) equations remain a computationally intensive
problem, even in two dimensions. Time-accurate solutions of the
incompressible flow problems using primitive variables are particu-
larly time consuming because of the elliptical nature of the govern-
ing equations. The existing unsteady flow solvers require excessive
CPU capability; therefore, there is continuing interest in finding
more efficient methods for obtaining numerical solutions to the N-S
equations.

Recently, new ideas have been introduced for unsteady
flow solvers. One scheme of interest is the cubic-interpolated
pseudoparticle-combined unified procedure (CIP-CUP) method,
originally proposed by Yabe and Wang' and Yabe.? The CIP-CUP
method is an explicit time-marching scheme with a fractional-step-
like approach developed to handle complex fluid flow problems,
covering both compressible and incompressible flow. In the CIP-
CUP formulation, the solution procedure is divided into two phases:
nonadvection and advection. In the nonadvection phase, an inter-
mediate pressure field is solved first, and then intermediate velocity
and density fields are obtained from this pressure field. The pres-
sure field is computed by solving a diffusion equation for pressure,
which is obtained via manipulation of the momentum and pres-
sure (or energy) equations. In the advection phase, the governing
equations are solved for the velocity, density, and pressure at the
next time step using the CIP scheme. The CIP scheme is a new
class of upwind schemes using cubic polynomial interpolation and
is highly accurate for solving generalized hyperbolic equations such
as advection-diffusion equations and the Korteweg-de Vries (KdV)
equation.>*

In this Note, we present an explicit method, the CIP-artificial
compressibility extension (-ACE) method for solving the incom-
pressible N-S equations in a time-accurate and efficient manner.
This method uses an artificial compressibility approach’ to trans-
form the governing equations into a hyperbolic system and uses
CIP-CUP methodology to first decouple the pressure and the veloc-
ity fields and then to integrate them with respect to time. Although
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this method is applicable to three-dimensional flow problems, we
confine our discussion to one- and two-dimensional flow problems.

Governing Equations
The incompressible N-S equations for isothermal and constant-
density fluids are modified by introducing an artificial compressibil-
ity approach to the following system of equations, written in tensor
notation and dimensionless form:

Bp 3ui
=~ g1 1
at ox; (1a)
31«{,’ 3Mi Bp al','j
— j— = —— 4 — 1b
ar "Mk, T am ' ax, (16)
where ¢ is time, x; = (x, y) are the Cartesian coordinates, u; =

(u, v) are the corresponding velocity components, p is the pressure,
7;; is the viscous stress tensor, and 7 and 8 denote the pseudo-
time and artificial compressibility parameter, respectively, which
are introduced to apply the artificial compressibility formulation.
The viscous stress tensor is defined as

7= 1 Bui + ou j
Y7 Re\ ox | 0x;
where Re is the Reynolds number. In this formulation, an incom-

pressible flowfield (i.e., a divergence-free flowfield) is only obtained
when the pressure field reaches steady state in pseudotime.

Numerical Formulation and Methodology

The CIP-ACE method presented in this Note was developed from
the CIP-CUP method."? As in the CIP-CUP method, Egs. (1a) and
(1b) are divided into a nonadvection phase [Eq. (1a) and 3f /3t = G]
and an advection phase (8f/0t + u - Vf = 0), where f denotes
u = (u,v) and G represents the right-hand side of Eq. (1b). The
nonadvection and advection phases are then solved separately, as
described in the following sections.

Nonadvection Phase

By using a fractional-step-like approach and the Euler implicit
time-differencing formula for the time derivative, Egs. (1a) and (1b)
for the nonadvection phase can be written in the following vector
form:

£ 3
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where the superscript n denotes the quantities at time ¢t = nA¢,
and the asterisk and double asterisks denote the first and second
intermediate quantities, respectively. The values with the double
asterisks are implicit values introduced by the application of the
implicit time differencing.

Here, we briefly describe the essence of the algorithm for solving
the system of Eqgs. (2—4). First, the velocity and pressure fields are
decoupled. Substituting the divergence of Eq. (3) into Eq. (2) gives
the following equation:

ap**
ot

= BAIV’p** — BV - u" ®)
Note that this equation is a diffusion equation in pseudotime and
can be easily solved by using one of the well-established algorithms
(e.g., Golub and Van Loan®).

Next, to determine the pressure field that will force the velocity
u** to be divergence free, Eq. (5) is solved. When Eq. (5) is iterated
in pseudotime until 3p*™* /01 = 0, Egs. (2) and (3) are satisfied,
and the divergence of the velocity is zero. Note that at steady state,
Eq. (5) is very similar to but is numerically more robust than the
market and cell(MAC) method.”



