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Introduction

T HE computational efficiency in computing the viscous
flowfields around airfoils may be improved by splitting the

flow domain into an inviscid potential flow zone and a viscous
boundary-layer/separated flow zone and by solving the distinct gov-
erning equations in each zone. In conventional viscous/inviscid in-
teraction methods1 this is achieved by solving the boundary-layer
equations around the airfoil and assuming potential flow for the
outer flowfield. This approach has the well-known limitations of
the boundary-layer equations. In addition, it needs an unsteady wake
modeling in the computations of unsteady flowfields. These compli-
cations suggest the desirability of exploring a Navier-Stokes based
viscous-inviscid interaction approach for the computation of un-
steady flowfields.

We have coupled a Reynolds-averaged Navier-Stokes solver with
a potential flow panel code in an attempt to split the flowfield
into viscous and inviscid flow zones with the objective to reduce
the computational domain in which Navier-Stokes equations are
solved. In the present work, we are mainly interested in unsteady
flows. Summa et al.2 originally applied a similar concept of cou-
pling potential and viscous flow solution methods to steady flows.
In comparison to the full Navier-Stokes solvers in which the com-
putational domain is required to extend approximately 15 chord
lengths from the airfoil surface, in this methodology the computa-
tional domain boundaries can be placed as close as one-fifth of a
chord length from the airfoil surface. The reduced computational do-
main encompasses the viscous boundary layer/wake regions in the
close proximity of the airfoil, and the adjacent inviscid flow zone
between the viscous flow zone and the outer boundary of the com-
putational domain. The boundary conditions at the outer boundary
are obtained from the potential flow solution. The boundary condi-
tions for the potential flow solution are, in turn, computed by the
Navier-Stokes solver on the inviscid flow zone beyond the bound-
ary layers. Thus, the potential and Navier-Stokes flow solutions are
coupled through their boundary conditions. The vortical wake in the
unsteady flows is modeled with concentrated wake vortices. This in-
viscid wake modeling fully captures the unsteadiness contained in
the wake.
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Navier-Stokes/Potential Flow Interactive Solution
Method

In the Navier-Stokes/potential flow interactive solution method
(NSPOT), the computational domain is partitioned into two zones,
a near-field and a far-field zone. Figure 1 shows the near-field zone
around an airfoil and its wake on a C grid. The solid line in the figure
encloses the outer boundary of the near-field zone S0. The near-field
zone encompasses the viscous boundary-layer and wake regions
and the inviscid flow region between the outer boundary S0 and the
viscous flow regions. The Navier-Stokes (NS) equations are solved
in the entire near-field zone. An inner boundary 5, which is denoted
by a dashed line in Fig. 1, is placed in the inviscid flow region of
the near-field computational domain. The source and vortex panels
used in the solution of the potential flow equation are placed on
Si. The region outside of S0, which extends to the freestream flow
conditions in all directions, is the far-field zone. The flowfield in the
far-field zone is assumed to be inviscid and irrotational and, thus,
may be computed by a Potential flow solution.

In the computation of unsteady flowfields, the downstream edge
of the inner boundary Siw is placed in the close vicinity of the airfoil
as shown in Fig. 1. It cuts through the wake at 10-50% chord length
from the airfoil trailing edge. For unsteady flows, it was found to be
necessary to model the vortex shedding at the intersection ofSiw and
the viscous wake. Whereas, in the computation of steady flowfields
the Siw is extended beyond the computational grid. The extended
Si boundary encloses all of the vorticity in the wake, and no vortex
shedding is required.3

Potential Flow Solver
The flowfield beyond the inner boundary S/ is assumed to be

inviscid, irrotational, and isentropic. The governing equations in
terms of the disturbance potential read

(2)

For low Mach number flows, density variations in Eq. (1) are first
dropped, and the resulting Laplace's equation V20 = 0 is solved
with a panel method using source/sink and vorticity singularity so-
lutions to satisfy the appropriate boundary conditions on S/. The ve-
locities computed by the panel method on S0 are then corrected for
compressibility effect using the Laitone compressibility correction.3
The pressure and density fields on S0 are evaluated by using the isen-
tropic relation between p and p and then, by integrating Eq. (2) for
pressure4

p =. (3)

where V2 is computed with the compressibility corrected velocities.
In unsteady flows, as the solution is marched in time, a discrete

vortex is shed from the Siw boundary. The magnitude of the shed
vortex is based on the time rate of change of circulation on the Si
boundary: y£ = —(Tn — F""1), where superscript n denotes the
time step. The circulation F is computed from the integration of
the tangential velocity on Si given by the NS solution. Once the
vortices are shed, they are convected downstream. The convection
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Fig. 1 Computational domain for the Navier-Stokes/potential flow in-
teractive solution method.

velocity is approximated by an empirical formula4 which states that
the depression in the velocity profile decreases as

Navier-Stokes Solver
The strong conservation-law form of the two-dimensional, thin-

layer Navier-Stokes equations in a curvilinear coordinate system
(£, £) along the axial and normal direction respectively, is given as
follows:

(4)

where Q is the vector of conservative variables, F and G are the
inviscid flux vectors, and 5 is the thin-layer approximation of the
viscous fluxes in the f direction normal to the airfoil surface.5 The
flowfield is assumed to be fully turbulent, and the Baldwin-Lomax
turbulence model is used to evaluate the eddy viscosity.

The numerical integration is performed using an upwind biased,
factorized, iterative, implicit, numerical scheme5 given by

[7

In Eq. (5), the superscript n denotes the time step and p refers to
Newton subiterations within each time step. The inviscid fluxes F
and G are evaluated using Osher's third-order-accurate up winding
scheme. The flux Jacobian matrices & and B* are evaluated by
the Steger- Warming flux-vector splitting.

Results and Discussion
We investigated unsteady flowfields around a NACA 0012 airfoil

undergoing pitching motions and steady flowfields around stationary
airfoils held at various incidences. A 181 x 81 point C-type baseline
grid with 120 points around the airfoil and 81 points in the normal
direction was employed. The normal spacing at the airfoil surface
was 0.00005. The computational grid for NSPOT computations was
obtained from the baseline grid by excluding the grid lines beyond
the specified S0 boundary in the transverse direction. The inner
boundary 5, was located 4-6 grid points inside S0.

a = 9.95

DENSITY
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Fig. 2 Flowfield computed by NS and NSPOT, S0 = 0.15c, sinusoidally
oscillating airfoil, a = 5 + 5 cos(utf), ^c/IU^ = 0.099, M^ = 0.3, and
Re = 3.93 x 106.

Flow over an Oscillating Airfoil
We first studied the unsteady flowfield around a NACA 0012

airfoil undergoing an oscillatory motion with a reduced frequency,
k = coc/2Uoo = 0.099 and a(t) = 5 + 5 cos(a>f )• Here a> is the fre-
quency of the oscillatory motion, and a is in degrees. The pitching
axis was located at 0.25c. The flowfield was computed at M^ = 0.3
and Re = 3.93 x 106. In the NSPOT computations, the computa-
tional boundaries were located at S0 = 0.15c and Siw = 0.30c.
This outer boundary location sets the computational grid size to
181 x 49, which gives about 40% savings in the total number of
grid points.

Figure 2 shows the flowfields computed by NSPOT and NS so-
lutions in terms of density contours with the same contour values.
The quantitative agreement in the density contours shows that the
NSPOT solution captures the compressibility of the flowfield accu-
rately. It may be concluded that for low Mach number flows, the
density variations in the continuity equation Eq. (1) may be omit-
ted when this equation is solved on S/, provided that the computed
velocities on S0 are corrected for compressibility effects, and the
evaluation of pressure includes the compressibility effects through
isentropic flow relations. Figure 3 shows the boundary-layer profiles
at the maximum angle of attack, a = 10 deg f. The + marks on the
profiles correspond to every fifth grid point. The predictions of the
NSPOT and NS solutions agree quite well.

Figure 4 shows the unsteady aerodynamic load hysteresis loops
computed by NS and NSPOT solutions and the measurements of
McAlister et al.6 The NS and NSPOT predictions, in general, agree
well except for a slight deviation in the drag and moment coefficients
as the angle of attack increases. This is mainly caused by the slight
underprediction of the stagnation pressure in the NSPOT compu-
tation, which may be attributed to the compressibility effect. As
the oscillatory motion advances into the second cycle, the lift pre-
dicted by NSPOT is slightly higher than the NS prediction and is not
exactly periodic. This behavior is attributable to the differences in
the vortical wake computations. In the NS computations, the down-
stream boundary extends 10 chord lengths, and the vorticity in the
wake leaves the computational domain when it reaches the down-
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BOUNDARY LAYER PROFILES

NSPOT, So=0.15c
NS

Fig. 3 Boundary-layer profiles, sinusoidally oscillating airfoil, a = 5 +
5 cosM), ucfiUoe = 0.099, M^ = 0.3, and Re = 3.93 X 106.
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Fig. 4 Time history of the unsteady aerodynamic loads, sinusoidally
oscillating airfoil, a = 5 + ScosM), (^c/2U00 = 0.099, M^ = 0.3, and
Re = 3.93 X 106.

stream boundary. However, in NSPOT, all of the shed vortices are
conserved and are accounted for.

The accuracy of the computed aerodynamic loads deteriorates
when the outer boundary S0 is located as close as 0.1 Oc from the
airfoil, for which S, happens to be located at 0.05c from the airfoil.4
In this case, the 5i boundary is placed so close that it does not
completely enclose the vortical field around the airfoil. Similarly,
NSPOT computations were found to be insensitive to the location
of the Stw in the O.lOc—0.60c range. However, the accuracy of
the computations degraded when Siw is placed beyond one chord
length from the trailing edge.4 This behavior is attributed to the
weakened coupling between shed vortices and the unsteady wake.
The longer the unsteady viscous wake ahead of the vortex shed-
ding boundary £,•„,, the more the unsteady effects are delayed and
suppressed.

TECHNICAL NOTES

STEADY-STATE SOLUTIONS
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Fig. 5 Steady-state lift values computed by NS and NSPOT.

Steady Flows
We computed steady flowfields around a NACA 0012 airfoil at

MOO = 0.30, Re = 3 x 106 and a = 5, 10, and 14 deg. NSPOT
computations produced a 47%-30% grid point savings over the full
NS computations when the S0 location was varied between 0.1 Oc
and 0.40c. Figure 5 shows the lift values computed by NS and
NSPOT solutions as a function of S0 location and incidence. It is
clearly seen that the Navier-Stokes/potential flow interactive solu-
tion method is highly accurate and stable. At low incidences, such
as a = 5 deg, for which the boundary-layer thickness is relatively
thin, the outer boundary S0 can be placed at a distance as close as
0.1 Oc distance from the airfoil surface. As the vortical flow region
grows at higher incidences, the S0 location has to be placed far-
ther away. However, for mostly attached flows up to a = 14 deg,
the accuracy of the computed lift value with S0 located at 0.20c
does not degrade more than 1%. At incidences higher than a = 14
deg, the NS solution predicted massive flow separation. For mas-
sively separated flows, NSPOT computations cease to be efficient,
since the outer boundary S0 has to be placed more than two chord
lengths away from the airfoil as the extent of the vortical region
grows.

Concluding Remarks
We have developed a Navier-Stokes/potential flow interactive

solution method for unsteady and steady flows. This method
confines the Navier-Stokes computations to the close proxim-
ity of the vortical boundary-layer and the wake regions. The
method is capable of predicting low Mach number, attached
or mildly separated flowfields as accurately as the full do-
main Navier-Stokes solutions. For a typical flowfield, the Navier-
Stokes/potential flow interactive solution method is about 40%
more efficient than the full Navier-Stokes method in terms of CPU
times.
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Introduction

D URING the past three decades there has been significant
progress in the numerical analysis of unsteady, incompressible

flow problems. Despite the advances in algorithms and computer
hardware, however, time-accurate solutions of the incompressible
Navier-Stokes (N-S) equations remain a computationally intensive
problem, even in two dimensions. Time-accurate solutions of the
incompressible flow problems using primitive variables are particu-
larly time consuming because of the elliptical nature of the govern-
ing equations. The existing unsteady flow solvers require excessive
CPU capability; therefore, there is continuing interest in finding
more efficient methods for obtaining numerical solutions to the N-S
equations.

Recently, new ideas have been introduced for unsteady
flow solvers. One scheme of interest is the cubic-interpolated
pseudoparticle-combined unified procedure (CIP-CUP) method,
originally proposed by Yabe and Wang1 and Yabe.2 The CIP-CUP
method is an explicit time-marching scheme with a fractional-step-
like approach developed to handle complex fluid flow problems,
covering both compressible and incompressible flow. In the CIP-
CUP formulation, the solution procedure is divided into two phases:
nonadvection and advection. In the nonadvection phase, an inter-
mediate pressure field is solved first, and then intermediate velocity
and density fields are obtained from this pressure field. The pres-
sure field is computed by solving a diffusion equation for pressure,
which is obtained via manipulation of the momentum and pres-
sure (or energy) equations. In the advection phase, the governing
equations are solved for the velocity, density, and pressure at the
next time step using the CIP scheme. The CIP scheme is a new
class of upwind schemes using cubic polynomial interpolation and
is highly accurate for solving generalized hyperbolic equations such
as advection-diffusion equations and the Korteweg-de Vries (KdV)
equation.3'4

In this Note, we present an explicit method, the CIP-artificial
compressibility extension (-ACE) method for solving the incom-
pressible N-S equations in a time-accurate and efficient manner.
This method uses an artificial compressibility approach5 to trans-
form the governing equations into a hyperbolic system and uses
CIP-CUP methodology to first decouple the pressure and the veloc-
ity fields and then to integrate them with respect to time. Although
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this method is applicable to three-dimensional flow problems, we
confine our discussion to one- and two-dimensional flow problems.

Governing Equations
The incompressible N-S equations for isothermal and constant-

density fluids are modified by introducing an artificial compressibil-
ity approach to the following system of equations, written in tensor
notation and dimensionless form:

dr
(la)

(Ib)

where t is time, jc/ = (*, y) are the Cartesian coordinates, w/ =
(«, v) are the corresponding velocity components, p is the pressure,
Tij is the viscous stress tensor, and T and ft denote the pseudo-
time and artificial compressibility parameter, respectively, which
are introduced to apply the artificial compressibility formulation.
The viscous stress tensor is defined as

where Re is the Reynolds number. In this formulation, an incom-
pressible flowfield (i.e., a divergence-free flowfield) is only obtained
when the pressure field reaches steady state in pseudotime.

Numerical Formulation and Methodology
The CIP-ACE method presented in this Note was developed from

the CIP-CUP method.1'2 As in the CIP-CUP method, Eqs. (la) and
(Ib) are divided into a nonadvection phase [Eq. (la) and 3f/3t = G]
and an advection phase (df/dt + u - V/ = 0), where/ denotes
u — (u,v) and G represents the right-hand side of Eq. (Ib). The
nonadvection and advection phases are then solved separately, as
described in the following sections.

Nonadvection Phase
By using a fractional-step-like approach and the Euler implicit

time-differencing formula for the time derivative, Eqs. (la) and (Ib)
for the nonadvection phase can be written in the following vector
form:

(2)

(3)

U* - U*

AT"
= — vVRe (4)

where the superscript n denotes the quantities at time t =
and the asterisk and double asterisks denote the first and second
intermediate quantities, respectively. The values with the double
asterisks are implicit values introduced by the application of the
implicit time differencing.

Here, we briefly describe the essence of the algorithm for solving
the system of Eqs. (2-4). First, the velocity and pressure fields are
decoupled. Substituting the divergence of Eq. (3) into Eq. (2) gives
the following equation:

dp**
~~d7 (5)

Note that this equation is a diffusion equation in pseudotime and
can be easily solved by using one of the well-established algorithms
(e.g., Golub and Van Loan6).

Next, to determine the pressure field that will force the velocity
u** to be divergence free, Eq. (5) is solved. When Eq. (5) is iterated
in pseudotime until dp**/dr = 0, Eqs. (2) and (3) are satisfied,
and the divergence of the velocity is zero. Note that at steady state,
Eq. (5) is very similar to but is numerically more robust than the
market and cell(MAC) method.7


